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Abstract 
We describe a method of 3-D object recognition based on two stage use of a general 

purpose associative memory and a principal views representation. The basic idea is to make 
use of semi-invariant objects called keys. A key is any robustly extractable feature that has 
sufficient information content to specify a 2-D configuration of an associated object (loca- 
tion, scale, orientation) plus sufficient additional parameters to provide efficient indexing and 
meaningful verification. The recognition system utilizes an associative memory organized so 
that access via a key feature evokes associated hypotheses for the identity and configuration 
of all objects that could have produced it. These hypothesis are fed into a second stage asso- 
ciative memory, which maintains a probabilistic estimate of the likelihood of each hypothesis 
based on statistics about the occurrence of the keys in the primary database. Because it 
is based on a merged percept of local features rather than global properties, the method is 
robust to occlusion and background clutter, and does not require prior segmentation. En- 
try of objects into the memory is an active, automatic procedure. We have implemented a 
version of the system that allows arbitrary definitions for key features. Experiments using 
keys based on perceptual groups of line segments are reported. Good results were obtained 
on a database derived from of approximately 150 images representing different views of 7 
polyhedral objects. 
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1    Introduction: Philosophy and History 

Those not doomed to repeat history may skip directly to section 2. 

1.1 The Visual Recognition Problem 

Object recognition is probably the single most studied problem in machine vision. It is also 
one of the most ill defined. The standard intuitive definition typically involves establishing a 
correspondence between some internal model of an object, and 2-D patterns of light produced 
by an imaging system. Attempts to formalize this notion however, generally lead to problem 
statements that are either unsolvable, or so restrictive as to be practically useless. For 
example, a statement such as "the ability to determine which members of an arbitrary 
set of objects contributed to the formation of a particular image, with no restrictions on 
environment, viewpoint, or lighting" is easily shown to represent an impossible task. Highly 
restricted versions such as "the ability to distinguish single images of an arbitrary group often 
polyhedral shapes with fewer than 100 faces and differing from each other by at least distance 
x in shape metric Z taken from an arbitrary viewpoint given Lambertian reflectance, point 
illumination, isolated presentation, and at least N pixels on target" tend to be unsatisfying, 
and even these generally contain unresolvable instances that are not easy to characterize. 

There remains a pervasive intuition, stemming from human subjective visual experience, 
that visual recognition works, and that the bad cases, even in the general statement, are 
somehow pathological. This leads to a belief that a problem statement of the sort "the 
ability to recognize an image of an arbitrary normal object from any natural viewpoint in 
any reasonable environment most of the time" is sensible. The difficulty, of course, is making 
scientific sense of words such as "normal", "natural", and "reasonable". 

The operative word in the above paragraph is "works", because it leads to the question 
"works for what?". There is considerable evidence, from thirty years of research that "what" 
is not arbitrary establishment of correspondences between abstract object models and images. 
One idea is to interpret "works" in the context of a particular problem or problem area. The 
subjective terms in the previous paragraph can then be given meaning. A natural viewpoint 
is thus one that is expected to occur in the context of the application, a normal object is 
one whose identification is important, and a reasonable environment is one in which the 
application must be carried out. We have called this a behavioral approach [27]. In this 
context, recognition appears less as a process of solving a geometric/optical puzzle and more 
as a matter of using sensory information to get at stored state that permits the system 
to successfully interact with the environment, however success is defined. In other words, 
recognition is the evocation of memory. 

1.2 Recognition as Memory Access 

In this paper, we take the position that the phenomenon of recognition, rather than rep- 
resenting the establishment of a correspondence between an object in the world and some 
abstract model, should be viewed as sensory keyed access to a memory that is part of a 
behaving system.  In this view, memory is any stored information that the system uses in 



order to interact competently with the world. Such information can be procedural, ana- 
logical, or declarative, and at any level of abstraction. Thus we view evoking a particular 
activity on the same level as accessing a stored picture of an object or producing a sentence 
describing a visual scene. All three examples use sensory data to evoke stored information 
that is behaviorally relevant to the situation. 

Viewing recognition as a process of memory access has several advantages. First, it 
frees us from what might be called the tyranny of the model. What we are referring to are 
situations in which a predetermined notion about the representation drives the development 
of the system and its applications rather than the other way around. For example, observing 
that object boundaries in an image often occur as long, straight structures, and noting the 
similarity to the mathematical concept of a line segment may be useful as far as it goes, but 
it does not imply that the next structuring element to try should be quadratic curves or 
ellipses. This is a prime example of false generalization from mathematics. A memory-based 
view does not, of course exclude the use of model correspondence, but neither does it restrict 
us to such a formalism if the application does not require it. 

Second, taking a memory-based view can allow us to recognize and profit by relationships 
with other visual processes not generally thought of as recognition, for example, visual sta- 
bilization, and homing [28]. More generally, it provides a functional definition of recognition 
that ties in well with the behavioral notion of intelligence that has been gaining currency 
recently. It also provides a direct connection to learning and experience. Learning has tradi- 
tionally been considered as orthogonal to recognition, which allowed the question of model 
acquisition to be finessed. If recognition is viewed as memory access, then the question 
of how the information in the memory was acquired and organized is substantially more 
immediate, forcing system designers to deal with it up front. 

Finally, taking a memory-access approach forces us to develop a usable sensory-keyed 
memory architecture and access tools for it. The power and implications of such tools are not 
alway apparent at the outset. For example, during the development of the system described 
here, we needed an associative memory that could be keyed by different types of sensory 
input - the original idea being to make use of multiple feature types. It is widely believed 
that raw sensory input (e.g. individual pixels), is not likely to be an effective memory key, 
and hence the system we developed allowed for preprocessing of the sensory data. It was 
only after implementing the system that we realized that passing sense data through the 
associative memory was effectively preprocessing it, and the result could be fed back in as 
a key. This observation was the basis for the second-stage use of the associative memory 
as an evidence accumulator that we describe below, but the process is general. The idea of 
recurrent association is, in fact, well known both in psychology and classical AI, but we had 
not considered using it in this context until we had the tool in our hands. 

1.3     Previous Work 

Addressing vision from the standpoint of behavior and memory is not a new idea. In fact, 
prior to the development of electronic computers, behavioral description was the only av- 
enue available for investigating the phenomenon of vision. This precomputational work 
culminated in a series of books by Gibson [13; 14; 15] who advanced the central postulate 
that vision was essentially a modality that allowed biological systems to react to invariants 



in the structure of the world. What Gibson overlooked, however, was the complexity of 
computing the visual invariants used as primitives. The first influential theory of computa- 
tional vision, due to [23], essentially defined vision as the problem of determining what is 
where, and focussed almost entirely on the computational and representational aspects of 
the problem. Marr's theory of vision essentially described a staged computational architec- 
ture leading from image, to primal sketch, to 2-1/2 D sketch to invariant object centered 
descriptions. The processing hierarchy however, was static, and provided no structure for in- 
corporating behavioral constraints. Moreover, the final, critical step, from 2-1/2 D image to 
object centered representation proved problematical, suggesting that something important 
was missing. 

What distinguishes the recent interest in behavioral vision from the historical efforts is the 
commitment to establish it within a computational framework. The resurgence of interest in 
the behavioral aspects of intelligence is perhaps most clearly illustrated by the subsumption 
architecture proposed by Brooks [8; 9]. This paradigm is rather rigorously Gibsonian in that 
it explicitly disavows the notion of internal representation, relying instead on purely reactive 
strategies. The architecture works quite well for implementing low-level behaviors such as 
walking using simple sensors; however it now seems clear that higher level behaviors and 
more sophisticated sensory modalities such as vision, require some form of representation. 

Recent work on active vision [1; 10; 3; 4] has focussed on how directed control of the 
sensor characteristics (e.g. eyes, or tactile receptors) can simplify the process of obtaining 
the desired information. Most work to date has focussed on the effect of the ability to 
move the sensor [11; 36] or dynamically change an internal focus of attention [31]. Work on 
purposive or behavioral vision [27; 26; 20] attempts to take the context of the task explicitly 
into account. 

Much previous work in 3-D vision has focussed on model-based systems, on which there is 
a large literature. Notable recent examples are [22; 21; 19; 16]. Besl and Jain [5] give a survey 
of older work. The indexing techniques used in several of these systems have been recently 
analyzed, and the sensitivity of the techniques to various pertubations determined [17; 18]. 
Most model acquisition strategies have focussed on CAD-like techniques. The models are 
either entered by hand, or via a geometric reconstruction. There is a huge literature on shape 
from X (motion, stereo, shading etc.); however the goal in all this work has been to extract 
three-dimensional primitives such as point, line or plane descriptors, rather than functional 
representations. 

There is little work on direct acquisition of 3-D representation from visual exploration, 
or on implicit representation of 3-D structure, though some research on recovery of explicit 
models from range sensors has been done [32; 34]. [6] address the problem of refining world 
and object representations during navigation by a mobile robot. [35] discuss a rigid body 
representation that is implicitly encoded in linear combinations of three views, and thus in 
principle automatically acquirable, but don't actually do it. Similarly, [33] propose a neural 
architecture for learning aspect-graph representation, but don't apply it to real objects. 
Work on automatic acquisition of 2-D representation has been more successful, since all the 
information is present (e.g. [7; 2; 12]) We expect these techniques to be useful here, since 
we essentially propose utilizing a collection of augmented 2-D representations. 

There is some recent work that has a memory-based flavor too it. Rao and Ballard 
[30] describe an approach based on the memorization of the responses of a set of steerable 



filters centered on, or located at key points of an object. Mel [24] takes a somewhat similar 
approach using a database of stored feature vectors representing multiple low-level cues. 
Murase and Nayar [25] find the major principal components of an image dataset, and uses the 
projections of unknown images onto these as indices into a recognition memory. The common 
theme behind all these approaches is extraction of a medium-sized set of parameters that are 
expected to vary slowly with changes in orientation, lighting, etc. followed by indexing into 
some set of examples organized by the same indices. Three dimensional structure is handled 
by using multiple examples. Our approach is along similar basic lines, but we index on 
robustly extractable parts and add a second indexing stage in order to accumulate evidence. 

2    The Method 

2.1     Overview 

This paper describes an object recognition method based on two stage use of a general pur- 
pose associative memory, and a principal views representation of three dimensional objects. 
What we describe here is the application of the technique to the recognition of rigid 3-D ob- 
jects, but the underlying principles are not dependent on rigid geometry, and we anticipate 
extending the system to handle non-rigid and statistical objects as well. 

The approach makes use of semi-invariant objects we call keys. A key is any robustly 
extractable part or feature that has sufficient information content to specify a configuration 
of an associated object plus enough additional parameters to provide efficient indexing and 
meaningful verification. Configuration is a general term for descriptors that provide informa- 
tion about where in appearance space an image of an object is situated. For rigid objects, 
configuration generally implies location and orientation, but more general interpretations 
can be used for other object types. Semi-invariant means that over all configurations in 
which the object of interest will be encountered, a matchable form of the feature will be 
present a significant proportion of the time. Robustly extractable means that in any scene 
of interest containing the object, the feature will be in the N best features found a significant 

proportion of the time. 
The basic idea is to utilize an associative memory organized so that access via a key 

feature evokes associated hypotheses for the identity and configuration of all objects that 
could have produced it. These hypothesis are fed into a second stage associative memory, 
keyed by the configuration, which maintains a probabilistic estimate of the likelihood of each 
hypothesis based on statistics about the occurrence of the keys in the primary database. The 
idea is similar to a multi-dimensional Hough transform without the space problems. In our 
case, since 3-D objects are represented by a set of views, the configurations represent two 
dimensional transforms. Efficient access to the associative memories is achieved using a 

hashing scheme. 
The approach has several advantages. First, because it is based on a merged percept of 

local features rather than global properties, the method is robust to occlusion and background 
clutter, and does not require prior segmentation. This is an advantage over systems based on 
principal components template analysis, which are sensitive to occlusion and clutter. Second, 
entry of objects into the memory is an active, automatic procedure. Essentially, the system 



explores the object visually from different viewpoints, accumulating 2-D views, until it has 
seen enough not to mix it up with any other object it knows about. Third, the method lends 
itself naturally to multi-modal recognition. Because there is no single, global structure for 
the model, evidence from different kinds of keys can be combined as easily as evidence from 
multiple keys of the same type. The only requirement is that the configuration descriptions 
evoked by the different keys have enough common structure to allow evidence combination 
procedures to be used. This is an advantage over conventional alignment techniques, which 
typically require a prior 3-D model of the object. Finally, the probabilistic nature of the 
evidence combination scheme, coupled with the formal definitions for semi-invariance and 
robustness allow quantitative predictions of the reliability of the system to be made. 

2.2 General associative memory 

We have been advocating a memory-based approach to recognition, but have not described 
just what is meant by the term. To some extent, all recognition algorithms employ memory 
in the recognition process, if only in the form of stored 3-D models. What distinguishes a 
memory-based approach, is that memory-lookup operations account for a large proportion 
of the computation employed in the recognition procedure (as opposed to, say, geometric 
operations or graph search). 

Since our approach is based on an efficient associative memory, one of the first steps 
was to design and implement such a memory and verify that it satisfies our requirements. 
The basic operation we need is partial match association over heterogeneous keys. More 
specifically, we want a structure into which we can store and access (key, association) pairs 
where the key and association objects may be any of a number of disparate types. Associated 
with each object type employed as a key is a distance metric. The ideal query operation 
takes a reference key and returns all stored (key, association) pairs where the key is of the 
correct type and within a specified distance of the reference key in the appropriate metric. In 
practice, this ideal may have to be modified somewhat for efficiency reasons. In particular, 
highly similar association pairs may be merged in storage, and we may place a bound on the 
number of associations that are returned for any given query, or on the maximum separation 
that can be handled. 

Our overall approach to the design of the memory was leave it as flexible as possible. 
In the current implementation, the memory is just a large array of buckets each of which 
can hold a variable number of (key, association) pairs. This allows a number of different 
access schemes to coexist. In particular, hashing, array indexing and tree search can all 
be implemented efficiently. Associated with each key type are functions defining a distance 
metric and a search procedure for locating keys in the memory. Thus if a certain key type 
has an efficient indexing method, it can be implemented for this type, rather than using a 
uniform but less efficient policy. This allows a large amount of flexibility in the system, and 
also permits new key types to be added efficiently in a modular fashion. 

2.3 Key Features 

The recognition technique is based on the the assumption that robustly extractable, semi- 
invariant keys can be efficiently recovered from image data.    More specifically, the keys 
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must posses the following characteristics. First, they must be complex enough not only to 
specify the configuration the object, but to have parameters left over that can be used for 
indexing. Second, the keys must have a substantial probability of detection if the object 
containing them occupies the region of interest (robustness). Third, the index parameters 
must change relatively slowly as the object configuration changes (semi-invariance). Many 
classical features do not satisfy these criteria. Line segments are not sufficiently complex, full 
object contours are not robustly extractable, and simple templates are not semi-invariant. 
We believe that features with the necessary properties can be found for a large number 
of situations. It may be necessary, however, to take the particular task and context into 
consideration. For example, in some applications, color cues may be sufficient. In others, 
where it is important to recognize orientation, shape features may be more important. 

One conflict that must be resolved is that between feature complexity and robust de- 
tectability. In order to reduce multiple matches, key features must be fairly complex. How- 
ever, if we consider complex features as arbitrary combinations of simpler ones, then the 
number of potential high-level features undergoes a combinatorial increase as the complexity 

increases. This is clearly undesirable from the standpoint of robust detectability, as we do 
not wish to consider or store exponentially many possibilities. The solution is not to use 
arbitrary combinations, but to base the higher level feature groups on structural heuristics 
such as adjacency and good continuation. Such perceptual grouping processes have been 
extensively researched in the last few years. 

The use of semi-invariance represents another necessary compromise. From a computa- 
tional standpoint, true invariance is desirable, and a lot of research has gone into looking 
for invariant features. Unfortunately, such features seem to be hard to design, especially for 
2-D projections of general 3-D objects. We settle for semi-invariance and compensate by 
a combination of two strategies. First, we take advantage of the statistical unlikelihood of 
close matches for complex patterns (another advantage of relatively complex keys). Second, 
the memory-based recognition strategy provides what amounts to multiple representations 
of an object in that the same physical attribute of the object may evoke several different 
associations as the object appears in different configurations. The semi-invariance prevents 
this number from being too large. Possible keys for recognition of rigid 3-D objects in- 
clude robust contour fragments, feature normalized templates, keyed color histograms, and 
normalized texture vectors. 

Our current implementation is designed to recognize 3-D polyhedral objects on the basis 
of their shape, using a set of 2-D views as the underlying representation. This particular 
context derives from a robot assembly system we are implementing that servos off shape 
and geometric relationships between parts. The prototype manipulates a set of polyhedral 
pieces, which have no distinguishing markings aside from their shape. The vision system 
requirements are an ability to recognize which of several parts is present in a scene, and to 
localize important geometric features of the part. A shape-based description thus seemed 
appropriate. The keys we chose for this application are based on chains of line segments, 
variously referred to in the literature as polylines or supersegments. In particular, we first 
run a line segment finder on the image, and then extract perceptual groups of three seg- 
ments whose properties are consistent with the hypothesis that they form a section of a 3-D 
boundary. We call such groups 3-chains. The base segment of a 3-chain provides enough 
information to determine the 2-D configuration of any view of which it might be a part. In 
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Figure 1: Examples of 3-chains showing invariant angles and length ratios 

addition, associated with each 3-chain are two angles and two length ratios, which are abso- 
lute invariants for rigid 2-D transformations, and semi-invariant for 3-D rigid transformation 
of the projected object (see Figure 1). This use of segment chains is somewhat similar to 
the structural indexing of Stein and Medioni [12]. 

3    Recognition Algorithms 

The basic recognition procedure consists of four steps. First, potential key features are 
extracted from the image using low and intermediate level visual routines. In the second 
step, these keys are used to access the associative memory and retrieve information about 
what objects could have produced them, and in what relative configuration. The third step 
uses this information, in conjunction with geometric parameters factored out of the key 
features such as position, orientation, and scale, to produce hypotheses about the identity 
and configuration of potential objects. Finally, these hypotheses are themselves used as keys 
into a second stage associative memory, which is used to accumulate evidence for the various 
hypotheses. 

In the first step, the extraction of key features, one of the most significant issues involves 
the idea of active or selective processing. In general an object recognition algorithm will 
perform better if the search domain is restricted — that is, if the system is handed a region 
of interest thought to be more or less filled by some recognizable object, rather than simply 
being asked what recognizable objects occur in the scene. This is essentially the what task in 
the what/where dichotomy. The design of attentional operators which efficiently tag regions 
of high interest on the basis of low-level processing is consequently an important subject. 
A number of global or task-independent cues have been suggested, including gray-level blob 
detection, closed contour analysis, color contrast analysis, motion segmentation, and scale 
entropy measures. When incorporated into an autonomous system, such interest measures 
must be provided. For the purposes of testing the recognition system, we can have a user 
provide a window. 



Such considerations raise the question, however, whether task-independent cues are al- 
ways what is desired. All the previously mentioned cues already make an implicit assump- 
tion about the task - namely that we are looking for discrete physical objects. Perhaps the 
pre-attentive cues should be tailored to the task. Carried to its logical extreme, this idea 

suggests tailoring an attentional mechanism to respond best to a particular object, or even 
a particular configuration of an object. This is essentially the where task in the what/where 
dichotomy The associative memory system proposed can be used to solve this task as well 
as the forward what task. One interesting approach is to use a reverse association to obtain 
the keys likely to be associated with an object or class of objects. These could then be used 
to design an optimal filtering process. 

In the final step, an important issue is the method of combining evidence. The simplest 
technique is to use an elementary voting scheme - each piece of evidence contributes equally 
to the total. This is clearly not well founded, as a feature that occurs in many different 
situations is not as good an indicator of the presence of an object as one that is unique 
to it. An evidence scheme that takes this into account would probably display improved 
performance. The question is how to evaluate the quality of various pieces of evidence. An 
obvious approach in our case is to use statistics computed over the information contained in 
the associative memory to evaluate the quality of a piece of information. Having said this, 
it is clear that the optimal quality measure, which would rely on the full joint probability 
distribution over keys, objects and configurations is infeasible to compute, and we must use 

some approximation. 
A simple example would be to use the first order feature frequency distribution over the 

entire database, and this is what we do. The actual algorithm is to accumulate evidence 
proportional to log(l + l/(kx)) where x is the probability of making the particular matching 
observation as approximated from database statistics, and k is a proportionality constant 
that attempts to estimate the actual geometric probability associated with the prediction 
of a pose from a key. The underlying model is that the evidence represents the log of the 
reciprocal of the probability that the particular combination of features is due to chance. 
The procedure used makes an independence assumption which is unwarranted in the real 
world, with the result that the evidence values actually obtained are serious overestimates if 
interpreted as actually probabilities. However, the rank ordering of the values is fairly robust 
to distortion due to this independance assumption. Since only the rank ordering enters into 
the decisions made by the system, we are more comfortable with the scheme than might be 
expected. 

Once a well founded evidence combination scheme is defined, the use of multi-modal 
information is relatively simple to implement. All that needs to be done is to define a 
new key type, and hook in the various routines needed to implement it. Issues of relative 
importance are subsumed by the evidence combination scheme. This easy use of multiple 
source of information was a primary factor in choosing to look at memory-based recognition. 
Characterization of the usefulness of the various key classes in different applications is an 
important piece of information for the integration system. 



4    Model Acquisition 

In the preceding discussion we have assumed that the associative memory already existed in 
the requisite form. However, one of the primary attractions of a memory-based recognition 
system is that it can be trained efficiently from image data. The basic process of model 
acquisition is simply a matter of providing images of the object to the system, running the 
key detection procedures on these images, and storing the resulting (key, association) pairs. 
The number of images needed may vary from one, for simple 2-D applications, to several 
tens for rigid object recognition, and possibly more for complicated non-rigid objects. This 
procedure has a number of advantages over existing schemes. First, it does not require 
a pre-existing 3-D model; just access to imagery of the object. It is even possible to use 
imagery that contains occluded or cluttered views of the object, though this requires some 
modification of the process. Second, the process is efficient. It essentially runs in time 
proportional to the number of pairs stored in memory. This is in contrast to many learning 
algorithms that scale poorly with the the number of stored items. Note that the term model 
acquisition is actually something of a misnomer since the representation of a particular object 
is typically distributed over many memory locations, and there is not necessarily any single 
structure that might be called a model gluing together all the parts. 

Despite the simplicity of the basic procedure, there are a number of interesting research 
issues associated with the model acquisition process. First, the basic process may be modified 
somewhat. The most obvious modification would be to merge duplicate or near duplicate 
entries in the memory in order to conserve space. This is easily done by accessing a key in 
the database and examining the current associations before storing a new one. 

A rather more interesting issue has to do with a tie-in to active vision. The necessary 
information for a two dimensional object can theoretically be obtained from a single image. 
In contrast, several views are needed for rigid 3-D objects. One way of getting these is simply 
for a human operator to guess at how many views are needed and from what angles, provide 
them, and then test the resulting system to make sure it is reliable. A more interesting 
approach however, is to use an active agent to explore the object and acquire the necessary 
views automatically. The basic idea is for the agent to examine the object in various configu- 
rations, adding new information whenever its current memory does not recognize the object. 
Doing this randomly would yield reasonably good performance quickly, however finding low- 
probability problematical configurations could take a long time. There is considerable room 
in this case, for knowledge directed exploration, for instance, the system could make use 
of knowledge that end-on views of highly elongated objects are apt to cause trouble. For 
non-rigid objects, the problem is even more interesting. Here, we have the possibility of not 
only active exploration for model acquisition, but for recognition as well. For example, in 
the case of a highly articulated object with no distinctive rigid subparts, an approach to 
recognition would be to attempt to manipulate it into a canonical form (e.g. stretched out) 
which would be more easily recognizable. 
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Figure 2: The polyhedral objects used in the test set 

5    Experiments 

Using the principles described above, we implemented a memory-based recognition system 
for polyhedral objects using 3-chains as the basic keys. Component segments were extracted 
using a stick-growing method developed recently at Rochester [29], and organized into chains. 
For objects entered into the database, the best 10 chains were selected to represent the object. 
The threshold on the distance metric between chains was adjusted so that it would tolerate 
approximately 15-20 degrees deviation in the appearance of a frontal plane (less for oblique 
ones). The practical considerations leading to this selection were to allow the system to 
discriminate pentagons from hexagons without requiring more than about 50 views for an 
object. 

We performed experiments using a set of 7 polyhedral objects from a child's toy. These 
are shown in Figure 2, and, from the top appear as a triangle, a square, a trapezoid, a 
pentagon, a hexagon, a star, and a cross. Note, however that the objects are not simple 
prisms, but have an H-shaped cross section. This produces produces interesting edges and 
shadow effects when the objects are viewed from any angle other than straight down. 

We obtained a training database of approximately 150 views of these objects from dif- 
ferent directions ranging from 12 for the hexagon, to 60 for the trapezoid, and covering all 
viewing angles except straight-on from the side, since from that point of view a number of the 
objects are indistinguishable without measurements accurate to a few percent. The variation 
in the number of views needed is due to varying degrees of symmetry in the objects. All 
training images were acquired under normal room illumination, with the objects in isolation 
against a dark background. The training database was used to compile a segment-based 

associative memory for recognition of the objects. 
We then subjected the recognition system to a series of increasingly stringent tests. 

Recall that the geometric design of the geometric indexing system ensures invariance to 2-D 
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translation, rotation, and scale down to the point where there are insufficient pixels to provide 
a good estimate of segment attributes. Invariance to out-of-plane rotations is provided by the 
combination of slightly flexible match criteria for the chain features coupled with multiple 
views. Robustness against clutter and occlusion is provided by the representation in terms 
of multiple features. The experiments were designed to test various aspects of this design. 

A basic assumption made during these tests is that some other process has isolated 
a region of the image where a recognizable object may occur. We do not assume prior 
segmentation, but we do assume that only one, or at most a few objects of interest (as 
opposed to tens or hundreds) will occur in a window handed to the system. The system has 
a certain capability to state that it recognizes nothing in a window (don't know), and, in 
fact, tended to do this when given windows in which none of the known objects appeared. 
However, we have not statistically grounded this ability and hence the results reported here 
should be considered to be essentially forced choice experiments. 

The first test, was simply to identify top down views of the objects, in various positions, 
scales, and rotations. This was essentially a test of the 2-D invariance built into the geome- 
try. The system was tested first with a reduced database generated from 7 top down views 
(one for each object), and then with the full 3-D database, to ensure that the additional in- 
formation stored did not produce enough cross talk to interfere with the recognition. Object 
presentations were under ordinary room lighting, with the objects isolated against a dark 
background. The system performed as expected in both cases, with no mistakes. 

For the second test, we acquired 14 additional views of the objects, two of each, again 
isolated against a dark background, and taken from viewpoints intermediate between the 
ones in the database. The idea here is to test the 3-D rotation invariance. No errors were 
made in the 14 test cases, even between similar objects such as the square and the trapezoid, 
or the pentagon and the hexagon, despite the fact that we had anticipated some confusion 
in these cases. These results alone allow us to say that the system is probably at least 90 
percent accurate in situations of this type. Results from other tests lead us to believe that 
the actual performance is, in fact, somewhat better. 

In the third test we took a number of images containing multiple objects viewed from 
modest angles (45 degrees or less from overhead) under normal lighting against a dark 
background. An example is shown in Figure 3. We then supplied the system with windows 
containing one object and parts of others. Since the system performs no explicit segmentation 
of its own, the intent of this experiment is to test robustness against minor clutter. Examples 
of the sort of windows passed to the system are shown in Figure 4. In twenty plus tests, we 
observed no errors due to clutter. We did have one failure, but it was due to an object in 
the image being too small for the segment finder to find good boundary sets. We also tried 
examples with two objects in the window. In this case, the system typically identified one 
of the objects, and when asked what else was there identified the second as well. 

The fourth experiment was a more severe clutter test. Here we took pictures of different 
objects held in a robot hand at various angles. Examples are shown in Figure 5. This was 
a hard problem for our system, and we obtained recognition rates only on the order of 75 
percent - i.e. we saw a significant number of failures. On analysis, we found that the primary 
reason for failure was not crosstalk in the memory caused by clutter, but poor performance 
of the low-level feature identification process caused by the added complexity in the image. 
Thus the memory index has nothing to work on. Potential solutions involve improving the 
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Figure 3: View of a group of objects 

Figure 4:   A set of windows containing objects and minor clutter.   The central object was 
correctly identified in all these cases. 
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Figure 5: A set of windows containing objects help by a robot hand representing moderate 
clutter. The system successfully identified the object in all cases except the example in the 
lower right. 

segment finder, which at present is strictly bottom up, and does no local grouping of its own, 
or using other features. Figure 6 shows a degree of clutter that broke the system completely. 
Recognition in windows from this image was essentially at the level of chance. Again, the 
failure is in the low-level processes. 

Processing times were dominated by the low-level feature extraction. On a typical window 
containing one object plus clutter, the indexing process in the full database took a couple of 
seconds on a SPARC1. The low level processing could take a few tens of seconds, depending 
on the complexity of the image. 

6     Conclusions and Future Work 

In this paper we have argued for a memory-access interpretation of recognition, and proposed 
a general framework for memory-based recognition using a 2-stage association process. We 
have illustrated the concept by implementing a memory-based recognition system for 3- 
D polyhedral objects using chains of line segments as memory keys. The system actually 
performs quite well for a small database of 3-D shapes, and exhibits a certain amount of 
robustness against clutter and occlusion. When the algorithm fails, it is not due to crosstalk 
in the memory, but to failure of the low-level processes to extract robust features. We are 
currently engaged in embedding the system into a robotic manipulation system that we will 
use for assembly tasks. 

The next step we plan to take is to generalize the system to use keys based on boundary 
curves rather than just straight segments. This work is nearly complete at the time. We 
also plan to incorporate multi-modal features into the database, including color and texture 
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Figure 6: An image with severe clutter. Performance of the system on windows drawn from 
this image was only slightly above chance level (2 out of 6 identified correctly). 

as well as shape information. We anticipate that this will give us a capability to recognize 
less well structured objects such as leaves or clothing in addition to objects having a strictly 

defined shape. 
There are a couple of other areas we eventually propose to address. One, which is 

not so much a research issue as an implementation issue is putting the various algorithms 
onto platforms having appropriate parallel hardware for the various processes involved in 
recognition. The implementation might well involve heterogeneous architectures, as the 
low-level and high level parts involve rather different computational processes. We are also 
interested in evaluating the performance of the system when embedded in a larger, real-time 

system. 
There is also the issue of dealing with hierarchical classification of objects. As described 

above, the system handles object classes in a flat manner. There is no way of specifying 
that a particular small portion of an object may, in some application, be crucial for making 
a distinction (e.g. the license plate of a car). Similarly, there is no explicit way of dealing 
with multiple scales of structure in a single object. Adapting a memory-based recognition 
system do deal effectively with hierarchical class/subclass distinctions and multi-resolution 

structure is probably the single most interesting long-term goal. 
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